
On the issue of imposing boundary conditions on quantum fields

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 L567

(http://iopscience.iop.org/0305-4470/36/45/L01)

Download details:

IP Address: 171.66.16.89

The article was downloaded on 02/06/2010 at 17:14

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/36/45
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) L567–L576 PII: S0305-4470(03)69242-5

LETTER TO THE EDITOR

On the issue of imposing boundary conditions on
quantum fields

E Elizalde1

Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Ave,
Cambridge, MA 02139-4307, USA

E-mail: elizalde@math.mit.edu and elizalde@ieec.fcr.es

Received 20 September 2003
Published 29 October 2003
Online at stacks.iop.org/JPhysA/36/L567

As far as the laws of mathematics refer to reality, they are not certain; and
as far as they are certain, they do not refer to reality.

A Einstein

Abstract
An interesting example of the deep interrelation between physics and
mathematics is obtained when trying to impose mathematical boundary
conditions on physical quantum fields. This procedure has recently been re-
examined with care. Comments on that and previous analysis are provided here,
together with considerations on the results of the purely mathematical zeta-
function method, in an attempt at clarifying the issue. Hadamard regularization
is invoked in order to fill the gap between the infinities appearing in the QFT
renormalized results and the finite values obtained in the literature with other
procedures.

PACS number: 03.70.+k

1. Introduction

The question, phrased by Eugene Wigner as that of the unreasonable effectiveness of
mathematics in the natural sciences [1] is an old and intriguing one. It goes back to Pythagoras
and his school (all things are numbers), even probably to the Sumerians, and maybe to more
ancient cultures, which left no trace. I Kant and A Einstein also contributed to this idea with
profound reflections, and mathematical simplicity, and beauty, have remained for many years
crucial ingredients when having to choose among different plausible possibilities.

An example of unreasonable effectiveness is provided by the regularization procedures
in quantum field theory (QFT) based upon analytic continuation in the complex plane
1 On leave from ICE, Consejo Superior de Investigaciones Cientı́ficas, and IEEC, Edifici Nexus, Gran Capità 2-4,
08034 Barcelona, Spain.
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(dimensional, heat-kernel, zeta-function regularization and the like). That one obtains
a physical, experimentally measurable, and extremely precise result after these weird
mathematical manipulations is, if not unreasonable, certainly very mysterious. For many
highly honourable physicists these remained always illegal practices. Such methods are now
fully justified and blessed with Nobel Prizes, but more because of the many and very precise
experimental checkouts (the effectiveness) than for their intrinsic reasonableness.

A simple example may be clarifying. Consider the calculation of the zero-point energy
(vacuum to vacuum transition, also called Casimir energy [2]) corresponding to a quantum
operator, H, with eigenvalues λn : E0 = 〈0|H |0〉 = 1

2

∑
n λn, where the sum over n may

involve several continuum and discrete indices. Only in special cases will this sum be
convergent. Generically one has a divergent series, to be regularized by different means.
The zeta-function method [3]—which stands on solid and flourishing mathematical grounds
[4]—will interpret it as the value of the zeta function of H: ζH (s) = ∑

n λ−s
n , at s = −1

(we set h̄ = c = 1). Generically ζH (s) is only defined as an absolutely convergent series for
Re s > a0 (a0 an abscissa of convergence), but it can be continued to the whole complex plane,
with the possible appearance of poles as only singularities. If ζH (s) has no pole at s = −1
then we are done; if it hits a pole, further elaboration is necessary. That the mathematical
result one thus gets coincides with the experimental one, constitutes here our specific example
of unreasonable effectiveness of mathematics.

In fact things do not turn out to be so simple. One cannot assign a meaning to the absolute
value of the zero-point energy, and any physical effect is an energy difference between two
situations, such as a quantum field in curved space as compared with the same field in flat space,
or one satisfying boundary conditions (BCs) on some surface as compared with the same in its
absence, etc. This difference is the Casimir energy: EC = EBC

0 − E0 = 1
2 (Tr H BC − Tr H).

And here the problem appears. Imposing mathematical boundary conditions on physical
quantum fields turns out to be a highly non-trivial act. This was discussed in much detail in a
paper by Deutsch and Candelas a quarter of a century ago [5]. These authors quantized em and
scalar fields in the region near an arbitrary smooth boundary, and calculated the renormalized
vacuum expectation value of the stress–energy tensor, to find that the energy density diverges
as the boundary is approached. Therefore, regularization and renormalization did not seem
to cure the problem with infinities in this case and an infinite physical energy was obtained
if the mathematical BCs were to be fulfilled. However, the authors argued that surfaces have
non-zero depth, and its value could be taken as a handy (dimensional) cut-off in order to
regularize the infinities. This approach will be recovered later in this paper. Just two years
after Deutsch and Candelas’ work, Kurt Symanzik carried out a rigorous analysis of QFT in
the presence of boundaries [6]. Prescribing the value of the quantum field on a boundary
means using the Schrödinger representation, and Symanzik was able to show rigorously that
such representation exists to all orders in the perturbative expansion. He showed also that the
field operator being diagonalized in a smooth hypersurface differs from the usual renormalized
one by a factor that diverges logarithmically when the distance to the hypersurface goes to
zero. This requires a precise limiting procedure and point splitting to be applied. In any case,
the issue was proved to be perfectly meaningful within the domains of renormalized QFT. In
this case the BCs and the hypersurfaces themselves were treated at a pure mathematical level
(zero depth) by using delta functions.

Recently, a new approach to the problem has been postulated [7]. BCs on a field, φ, are
enforced on a surface, S, by introducing a scalar potential, σ , of Gaussian shape living on and
near the surface. When the Gaussian becomes a delta function, the BCs (Dirichlet here) are
enforced: the delta-shaped potential destroys all the modes of φ at the surface. For the rest, the
quantum system undergoes a full-fledged QFT renormalization, as in the case of Symanzik’s
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approach. The results obtained confirm those of [5] in the several models studied albeit they
do not seem to agree with those of [6]. They are also in clear contradiction to those quoted in
the usual textbooks and review articles dealing with the Casimir effect [8], where no infinite
energy density when approaching the Casimir plates has been reported.

2. A zeta-function approach

Too often has it been argued that sophisticated regularization methods, as the zeta-function
procedure, get rid of infinities in an obscure way (e.g. through analytic continuation), so that,
in contrast to what happens with cut-offs, one cannot keep trace of the infinites, which are
cleared up without control, leading sometimes to erroneous results.

One cannot refute a statement of this kind rigorously, but it should be noted that more than
once (if not always) the discrepancies between the result obtained by using the zeta procedure
and other—say cut-off like—approaches have been proved to emerge from a misuse of zeta
regularization, and not to stem from the method itself. When employed properly, the correct
results have been recovered (for a good number of examples, see [3, 4, 9, 10]).

Take the most simple case of a scalar field in one dimension, φ(x), with a BC of Dirichlet
type imposed at a point, e.g. φ(0) = 0. We would like to calculate the Casimir energy for this
configuration, that is, the difference between the zero-point energy corresponding to this field
when the BC is enforced, and the zero-point energy in the absence of any BC. Taken at face
value, both energies are infinite. The regularized difference may still be infinite when the BC
point is approached (this is the result in [7]) or might turn out to be finite (even zero, which is
the result given in some standard books on the subject).

Let us try to understand this discrepancy. We have to add up all energy modes (trace of
H). For the mode with energy ω, the field equation reduces to

−φ′′(x) + m2φ(x) = ω2φ(x). (1)

In the absence of a BC, the solutions to the field equation can be labelled by k = +
√

ω2 − m2 >

0, as φk(x) = A eikx + B e−ikx , with A,B being arbitrary complex (for the general complex),
or as φk(x) = a sin(kx) + b cos(kx), with a, b being arbitrary real (for the general real
solution). Now, when the mathematical BC of Dirichlet type, φ(0) = 0, is imposed, this
does not influence at all the eigenvalues, k, which remain exactly the same (as stressed in the
literature). However, the number of solutions corresponding to each eigenvalue is reduced by
one-half to: φ

(D)
k (x) = A(eikx − e−ikx), with A being arbitrary complex (complex solution),

and φ
(D)
k (x) = a sin(kx), with a being arbitray real (real solution). In other words, the

energy spectrum (for omega) that we obtain in both cases is the same, a continuous spectrum
ω =

√
m2 + k2, but the number of eigenstates corresponding to a given eigenvalue is twice as

large in the absence of the BC.2

Of course these considerations are elementary, but they seem to have been put aside
sometimes. They are crucial when trying to calculate (or just to give sense to) the Casimir
energy density and force. More to this, just in the same way as the traces of the two matrices
M1 = diag (α, β) and M2 = diag (α, α, β, β) are not equal in spite of having ‘the same

2 To understand this point even better (by taking recourse to what is learned in the maths classes at high school),
consider the fact that further, by imposing Cauchy BC: φ(0) = 0, φ′(0) = 0, the eigenvalues still remain the same,
but for any k the family of eigenfunctions shrinks to just the trivial one: φk(x) = 0,∀k (the Cauchy problem is an
initial value problem, which completely determines the solution).
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spectrum α, β’, in the problem under discussion the traces of the Hamiltonian with and
without the Dirichlet BC imposed yield different results, both of them divergent, namely

Tr H = 2 Tr H BC = 2
∫ ∞

0
dk

√
m2 + k2. (2)

By using the zeta function, we define

ζ BC(s) :=
∫ ∞

0
dκ(ν2 + κ2)−s ν := m

µ
(3)

with µ being a regularization parameter with dimensions of mass3. We get

ζ BC(s) =
√

π�(s − 1/2)

2�(s)
(ν2)1/2−s (4)

and consequently,

Tr H BC = 1

2
ζBC(s = −1/2)

= m2

4
√

π

[
1

s + 1/2
+ 1 − γ − log

m2

µ2
− 
(−1/2) + O(s + 1/2)

]∣∣∣∣
s=−1/2

. (5)

As is obvious, this divergence is not cured when taking the difference of the two traces in
order to obtain the Casimir energy:

EC/µ = EBC
0

/
µ − E0/µ = −EBC

0

/
µ = �(−1)m2

8µ2
. (6)

We just hit the pole of the zeta function, in this case.
How is this infinite to be interpreted? What is its origin? Just by taking recourse to the

pure mathematical theory (durch reine Mathematik), we already get a perfect description of
what happens and understand well where does this infinite energy4 come from. It clearly
originates from the fact that imposing the BC has drastically reduced to one-half the family
of eigenfunctions corresponding to any of the eigenvalues which constitute the spectrum of
the operator. And we can also advance that, since this dramatic reduction of the family
of eigenfunctions takes place precisely at the point where the BC is imposed, the physical
divergence (infinite energy) will originate right there, and nowhere else.

While the analysis above cannot be taken as a substitute for the actual modelization of
Jaffe et al [7]—where the BC is explicitly enforced through the introduction of an auxiliary,
localized field, which probes what happens at the boundary in a much more precise way—it
certainly shows that pure mathematical considerations, which include the use of analytic
continuation by means of the zeta function, are in no way blind to the infinities of the physical
model and do not produce misleading results, when the mathematics is used properly. And it
is very remarkable to realize how close the mathematical description of the appearance of an
infinite contribution is to that provided by the more physical realization in [7].

3 Always necessary in zeta regularization, since the complex powers of the spectrum of a (pseudo-) differential
operator can only be defined, physically, if the operator is rendered dimensionless, which is done by introducing this
parameter. This is also an important issue, which is sometimes overlooked.
4 In mathematical terms, this is the infinite value for the trace of the Hamiltonian operator.
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3. The case of two-point Dirichlet boundary conditions

A similar analysis can be done for the case of a two-point Dirichlet BC: φ(a) = 0, φ(−a) = 0.
Straightforward algebra shows, in this situation, that the eigenvalues k are quantized, as
k = π̇/(2a), so that

ω� =
√

m2 +
�2π2

4a2
� = 0, 1, 2, . . . (7)

The family of eigenfunctions corresponding to a given eigenvalue, ω�, is of continuous
dimension 1, exactly as in the former case of a one-point Dirichlet BC, namely, φ�(x) =
b sin

(
�π
2a

(x − a)
)
, where b is an arbitrary, real parameter5. To repeat, the act of imposing

Dirichlet BC on two points has the effect of discretizing the spectrum but there is no further
shrinking in the number of eigenfunctions corresponding to a given (discrete) eigenvalue.

The calculation of the Casimir energy, by means of the zeta function, proceeds in this
case as follows [3, 4, 9, 10]. To begin with, it may be interesting to recall that the zeta-
‘measure’ of the continuum equals twice the zeta-‘measure’ of the discrete. In fact, just
consider the following regularizations:

∑∞
n=1 µ = µ

∑∞
n=1 n−s

∣∣
s=0 = µζR(0) = −µ

2 , and∫ ∞
µ

dk = ∫ ∞
0 dk(k + µ)−s

∣∣
s=0 = µ1−s

s−1

∣∣
s=0 = −µ, which prove the statement.

The trace of the Hamiltonian corresponding to the quantum system with the BC imposed,
in the massive case, is obtained by means of the zeta function

ζ BC(s) :=
∞∑

�=1

(
m2

µ2
+

π2�2

4µ2a2

)−s

=
( µ

m

)2s

[
−1

2
+

�(s − 1/2)

�(s)

am√
π

+
2πs

�(s)

(
2am

π

)1/2+s ∞∑
n=1

ns−1/2Ks−1/2(4anm)

]

(8)

Kν being a modified Bessel function of the third kind (or MacDonald’s function). Thus, for
the zero-point energy of the system with two-point Dirichlet BC, we get

Tr H BC/µ = 1

2
ζBC(s = −1/2) = −�(−1)m2

8µ2
− m

2πµ

∞∑
n=1

1

n
K1(2πnm/µ) (9)

where µ is, in this case, µ := π/(2a) (a fixes the mass scale in a natural way here). As in the
previous example, we finally obtain an infinite value for the Casimir energy, namely

EC/µ = EBC
0

/
µ − E0/µ = �(−1)m2

8µ2
− m

2πµ

∞∑
n=1

1

n
K1(2πnm/µ). (10)

It is, therefore, not true that regularization methods using analytical continuation (in
particular, the zeta approach) are unable to see the infinite energy that is generated on the
boundary-condition surface [5–7] (see equation (19) below). The reason is still the same as
in the previous example: imposing a two-point Dirichlet BC amounts again to halving the
family of eigenfunctions which correspond to any given eigenvalue (all are discrete, in the
present case, but this makes no difference). In physical terms, this means having to apply an
infinite amount of energy on the BC sites, in order to enforce the BC. In absolute analogy,
from the mathematical viewpoint, halving the family of eigenfunctions immediately results in
the appearance of an infinite contribution, under the form of a pole of the zeta function.
5 The contribution of the zero mode (� = 0) is controverted, but we are not going to discuss this issue here (see e.g.
[11] and references therein).



L572 Letter to the Editor

The reason why these infinities (the one here and that in the previous section) do not
usually show up in the literature on the Casimir effect is probably because textbooks on the
subject focus towards the calculation of the Casimir force, which is obtained by taking minus
the derivative of the energy with respect to the plate (or point) separation (here w.r.t. 2a). Since
the infinite terms do not depend on a, they do not contribute to the force (as is recognized
explicitly in [7]). However, some erroneous statements have indeed appeared in the above-
mentioned classical references, stemming from the lack of recognition of the catastrophical
implications of the act of halving the number of eigenfunctions, when imposing the BC. The
persistence of the eigenvalues of the spectrum was probably misleading. We hope to have
clarified this issue here.

4. How to deal with the infinities

Here, the infinite contributions have shown up at the regularization level, but a more careful
study [7] is able to prove that they do not disappear even after renormalizing in a proper
way. The important question is now: are these infinities physical? Will they be observed
as a manifestation of a very large energy pressure when approaching the BC surface in a lab
experiment? No doubt such questions will be best answered in that way, e.g. experimentally.
If, in contrast, this sort of large pressures fails to manifest itself, this might be a clear indication
of the need for an additional regularization prescription. In principle, this seems to be forbidden
by standard renormalization theory, since the procedure has been already carried out to the
very end: there remains no additional physical quantity which could possibly absorb the
divergences (see [7]).

In any case, there are circumstances—both in physics and in mathematics—where certain
‘non-orthodox’ regularization methods have been employed with promising success. In
particular, Hadamard regularization in higher-post-Newtonian general relativity [12] and
also in recent variants of axiomatic and constructive QFT [13]. Among mathematicians,
Hadamard regularization is nowadays a rather standard technique in order to deal with singular
differential and integral equations with BCs, both analytically and numerically (for a sample
of references see [14]). Indeed, Hadamard regularization is a well-established procedure in
order to give sense to infinite integrals. It is not to be found in the classical books on infinite
calculus by Hardy or Knopp; it was Schwartz [15] who popularized it, rescuing Hadamard’s
original papers. Nowadays, Hadamard convergence is one of the cornerstones in the rigorous
formulation of QFT through micro-localization, which on its turn is considered by specialists
to be the most important step towards the understanding of linear PDEs since the invention of
distributions (for a beautiful, updated treatment of Hadamard’s regularization see [16]).

Let us briefly recall this formulation. Consider a function, g(x), expandable as

g(x) =
k∑

j=1

aj

(x − a)λj
+ h(x) (11)

with λj being complex in general and h(x) a regular function. Then, it is immediate that∫ b

a+ε
dx g(x) = P(1/ε) + H(ε), P being a polynomial and H(0) finite. If the λj /∈ N, then one

defines the Hadamard regularized integral as

=
∫ b

a

dx g(x) :=
∫ b

a

h(x) dx −
k∑

j=1

aj

λj − 1
(b − a)1−λj . (12)
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Alternatively, one may define, for α /∈ N, p < α < p + 1, and f (p+1) ∈ C[−1,1], Kαf :=
1

�(−α)
=∫ 1

−1 dt
f (t)

(1−t)α+1 , to obtain, after some steps,

Kαf =
p∑

j=0

f (j)(−1)

�(j + 1 − α)2α−j
+

1

�(p + 1 − α)
−

∫ 1

−1
(1 − t)p−αf (p+1)(t) (13)

where the last integral is at worst improper (Cauchy’s principal part). If λ1 = 1, the result is
a1 ln(b − a), instead. If λ1 = p ∈ N, calling Hp(f ; x) := =∫ 1

−1 dt
f (t)

(t−x)p+1 , |x| < 1, we get

Hp(f ; x) =
∫ 1

−1


f (t) −

p∑
j=0

f (j)(x)

j !
(t − x)j


 dt

(t − x)p+1
+

f (j)(x)

j !
=
∫ 1

−1

dt

(t − x)p+1−j

(14)

where the first term is regular and the second one can be easily reduced to

1

(p − j)!

dp−j

dxp−j
−
∫ 1

−1

dt

t − x
(15)

being the last integral, as before, a Cauchy PP.
An alternative form of Hadamard’s regularization, which is more fashionable for physical

applications (as is apparent from the expression itself) is the following [12]. For the
case of two singularities, at �x1, �x2, after excising from space two little balls around them,
R

3\ (
Br1(�x1) ∪ Br2(�x2)

)
, with Br1(�x1) ∩ Br2(�x2) = ∅, one defines the regularized integral as

being the finite part of the limit

=
∫

d3xF(�x) := FPα,β→0

∫
d3x

(
r1

s1

)α (
r2

s2

)β

F (�x) (16)

where s1 and s2 are two (dimensionful) regularization parameters [12]. This is the version that
will be employed in what follows.

5. Hadamard regularization of the Casimir effect

We now use Hadamard’s regularization as an additional tool in order to make sense of the
infinite expressions encountered in the boundary value problems considered before. As it
turns out from a detailed analysis of the results in [7] (which we shall not repeat here, for
conciseness), the basic integrals which produce infinities, in the one-dimensional and two-
dimensional cases there considered, are the following.

In one dimension, with Dirichlet BC imposed at one (x = 0) and two (x = ±a) points,
respectively, by means of a delta-background of strength λ (see [7]), one encounters the two
divergent integrals:

E1(λ,m) = 1

2π

∫ ∞

m

dt√
t2 − m2

[
t log

(
1 +

λ

2t

)
− λ

2

]
(17)

E2(a, λ,m) = 1

2π

∫ ∞

m

dt√
t2 − m2

{
t log

[
1 +

λ

t
+

λ2

4t2
(1 − e−4at )

]
− λ

}
. (18)

Using Hadamard’s regularization, as described before, we obtain for the first one, equation (17),

E1(m) = λ

4π

(
1 − ln

λ

m

)∣∣∣∣
λ→∞

+ =
∫

(19)
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where the first term is the singular part when the limit λ → ∞ is taken, and the second—which
is Hadamard’s finite part—yields in this case

=
∫

= −m

4
. (20)

Such result is coinciding with the classical one (0, for m = 0). Note in particular, that the
further ln m divergence as m → ∞ is hidden in the λ-divergent part, and this behaviour
does explain why the classical results which are obtained using hard Dirichlet BC—which
corresponds as we just prove here to the Hadamard’s regularized part—cannot see it.

In the case of a two-point boundary at x = ±a (separation 2a), equation (18), we get a
similar equation (19) but now the regularized integral is as follows. For the massless case, we
obtain

=
∫

= − π

48a
(21)

which is the regularized result to be found in the classical books. In the massive case, m 
= 0,
after some additional work the following fast convergent series turns up (cf equation (10))

=
∫

= − m

2π

∞∑
k=1

1

k
K1(4akm). (22)

Thus equation (19) yields strictly the same result (10) that was already obtained by imposing
the Dirichlet BC ab initio. What has now been gained is a more clear identification of the
singular part, in terms of the strength of the delta potential at the boundary. This will be the
general conclusion, common to all the other cases considered here.

Correspondingly, for the Casimir force we obtain the finite values6

F2(a) = − π

96a2
(23)

in the massless case, and in the massive one

F2(a,m) = −m2

π

∞∑
k=1

[
K0(4akm) +

1

4akm
K1(4akm)

]
. (24)

These expressions coincide with those derived in the above-mentioned textbooks on the
Casimir effect, and reproduced before by using the zeta-function method (just take minus the
derivative of equation (19) w.r.t. 2a).

The two-dimensional case turns out to be more singular [7]—in part just for dimensional
reasons—and requires additional wishful thinking in order to deal with the circular delta
function sitting on the circumference where the Dirichlet BC is imposed. Here one encounters
the basic singular integral, for the term contributing to the second Born approximation (we
use the same notation as in [7]),

σ̃ (p) =
∫ ∞

0
dr rJ0(pr)σ (r) σ (r) = bλ exp

[
− (r − a)2

2ω2

]
(25)

with J0 being a Bessel function of the first kind, and
∫ ∞

0 dr σ (r) = λ, σ (r)
ω→0−→ λδ(r − a).

Hadamard’s regularization yields now (the τ replacing the σ in the regularized version)

τ(r, p) = cλ(rp + 1)−ω/2 exp

[
− (r − a)2

2ω2

]
ω→0−→ λδ(r − a) (26)

6 Note that the force F(a) is given here as minus the derivative of the total energy E(a) w.r.t. 2a, since this is the
distance between the two Dirichlet points (not a).
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with p being a (dimensionful) regularization parameter, the constant c being given by
c−1 = ∫ ∞

0 dr r−ω exp
[− (r−a)2

2ω2

]
, which exists and is perfectly finite; in particular, c−1(ω =

0.1, a = 1) = 0.25. Then,

τ̃ (p) = 2π

∫ ∞

0
drrJ0(pr)τ (r, p) = 2πλa(ap + 1)−ω/2J0(ap). (27)

It turns out that, for the Casimir energy, we get in this case (notation as in [7])

E
(2)

λ2 [τ ] = λ2a2

8

∫ ∞

0
dp (ap + 1)−ωJ0(ap)2 arctan(p/2m)|ω→0

= λ2a2

8

{
1

2ω
+

γ + 3 ln 2

2a
+ 4m

[
γ − 2√

π
[1 − ln(am)] h(4a2m2)

]}
(28)

where h(z) := 2F3 ((1/2, 1/2); (1, 1, 3/2); z) and γ is the Euler–Mascheroni constant; in
particular, for instance h(1) = 1.186 711, which is quite a nice value. Recall also that ω is the
width of the Gaussian δ, which is the very physical parameter considered in [5]. When this
width tends to zero an infinite energy appears (the width controls the formation of the pole).
The rest of the result is the Hadamard regularization of the integral, e.g.7

=
∫ ∞

0
dpJ0(ap)2 arctan(p/2m). (29)

Again, the finite part reverts to the results obtained in the literature with Dirichlet BC ab initio.
To summarize, it has been proved here—in some particular but rather non-trivial and

representative examples—that the finite results derived through the use of Hadamard’s
regularization exactly coincide with the values obtained using the more classical, less fully-
fledged methods to be found in the literature on the Casimir effect. Moreover, Hadamard’s
prescription is able to separate and identify the singularities as physically meaningful cut-
offs. Although the validity of this additional regularization is at present questionable, the fact
that it bridges the two approaches is already remarkable, maybe again a manifestation of the
unreasonable effectiveness of mathematics.
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